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INVESTIGATION OF CHEMICALLY REACTING 
AND RADIATING SUPERSONIC INTERNAL FLOWS 

I The two-dimensional s p a t i a l l y  e l  1 i p t i c  Navier-Stokes equations a re  used 

t o  i n v e s t i g a t e  the chemical ly reac t i ng  and r a d i a t i n g  supersonic f low o f  the 

hydrogen-air system between two p a r a l l e l  p l a t e s  and i n  a channel w i t h  a ten- 

degree compression-expansion ramp a t  the lower boundary. The e x p l i c i t  unspl i t 

M. Mani* and S. N. Tiwar i t  

ABSTRACT 

equations i n  time u n t i l  convergence i s  achieved. The chemistry source term i n  

the species equation i s  t reated i m p l i c i t l y  t o  a l l e v i a t e  the s t i f f n e s s  

associated w i th  f a s t  reactions. The tangent s lab approximation i s  employed i n  

the r a d i a t i v e  f l u x  formula t ion.  Both pseudo-gray and nongray model s a r e  used 

t o  represent the absorption-emission c h a r a c t e r i s t i c s  o f  the p a r t i c i p a t i n g  

species. Results obtained f o r  spec i f i c  condi t ions i n d i c a t e  t h a t  the r a d i a t i v e  

i n t e r a c t i o n  can have a s i g n i f i c a n t  inf luence on the f low f i e l d .  
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1. INTRODUCTION 

I n  the l a s t  several years there has been a g rea t  deal o f  research toward 

development o f  a hypersonic transatmospheric vehic le.  A t  the NASA Langley 

Research Center the hydrogen-fueled scramjet (supersonic combustion ramjet)  

engine has been a strong candidate f o r  p r o p e l l i n g  such a vehicle. For a 

I b e t t e r  understanding o f  the complex f l o w  f i e l d  i n  d i f f e r e n t  regions o f  the 

I engine, bo th  experimental and computational techniques are being employed. 

Several computer programs [1-41* have been developed t o  gain more i n s i g h t  i n t o  

the problem i n v o l v i n g  the f l ow  i n  the various sect ions o f  the scramjet module. 

I 
I 

I 

I 

I 

The purpose o f  t h i s  study i s  to invest igate the e f f e c t  o f  r a d i a t i v e  heat 

t rans fe r  i n  chemical ly reac t i ng  supersonic f l ow  i n  the scramjet combustor. 

The combustion o f  hydrogen and a i r  resu l t s  i n  absorbing-emi t t i n g  gases such as 

water vapor and hydroxyl rad ica l .  The presence o f  such gases makes the study 

o f  r a d i a t i v e  heat t rans fe r  i n  chemically r e a c t i n g  f lows an important issue. 

There are several models avai lab le i n  the l i t e r a t u r e  to represent the 

absorption-emission cha rac te r i s t i cs  o f  molecular gases CS-113. Some spec i f i c  

app l i ca t i ons  o f  the models t o  f l o w  and combustion r e l a t e d  prob-lems a r e  

a v a i l a b l e  i n  [8, 9, 12-14]. Both gray and nongray gas models are used i n  t h i s  

study. The gray gas model i s  less accurate b u t  i s  much more e f f i c i e n t  f o r  

parametric studies. For t h i s  model, the r a d i a t i v e  heat f l u x  i s  independent o f  

the wavelength and the governing equations can be expressed i n  terms o f  second 

order nonhomogenious ordinary d i f f e r e n t i a l  equations (ODE). This system o f  

ODE'S forms a t r i d iagona l  matr ix  which i s  solved by the Thomas algori thm. 

The f low f i e l d  i n  the combustor i s  represented by the Navier-Stokes 

* 
The numbers i n  brackets i nd i ca te  references. 



equations and the appropr iate number o f  species c o n t i n u i t y  equations [l-43. 

Incorporat ion of the f i n i t e  r a t e  chemistry model i n t o  the f l u i d  dynamic 

equations creates a s e t  o f  s t i f f  d i f f e r e n t i a l  equations. The s t i f f n e s s  i s  due 

to a d i s p a r i t y  i n  the. time scales o f  the governing equations. I n  the time 

accurate s o l u t i o n  a f t e r  the f a s t  t rans ients  have decayed and the so lu t i ons  are 

changing slowly, t ak ing  a l a r g e r  t i m e  step i s  necessary f o r  e f f i c i e n c y  

purposes. But e x p l i c i t  methods s t i l l  requi re  small t ime steps to maintain 

s t a b i l i t y .  An eigenvalue problem associated w i t h  s t i f f  ODE has been solved to 

express t h i s  p o i n t  c l e a r l y  i n  c21. One way around t h i s  problem i s  t o  use a 

f u l l y  i m p l i c i t  methods. This method, however, requi res the invers ion o f  a 

block mu1 t i -d iagonal  system o f  algebraic equations. This i s  d i f f i c u l t  t o  

implement t o  take f u l l  advantage o f  vector processing computers such as VPS- 

32. The use o f  a semi- impl ic i t  technique, suggested by several i n v e s t i g a t o r s  

C15-171, provides an a l t e r n a t i v e  to the  above problems. This technique t r e a t s  

the source term (which i s  the cause of  the s t i f f n e s s )  i m p l i c i t l y ,  and solves 

the r e s t  o f  equations e x p l i c i t l y .  

2. GENERAL FORMULATION 

A b r i e f  discussion i s  presented on var ious components o f  the scramjet 

engine.- Special a t t e n t i o n  i s  directed i n  discussion o f  the basic equations 

t h a t  are appl icable i n  analyzing the flow f i e l d  i n  d i f f e r e n t  p a r t s  o f  the 

engine. The r e l a t i o n s  f o r  the thermodynamic and chemistry models are a l s o  

provided i n  t h i s  section. 

2.1 Physical System and Model 

As mentioned i n  the introduct ion,  the scramjet engine has been a 

candidate f o r  p r o p e l l i n g  the hypersonic vehicle. I n  Fig. 2.1, var ious a i r  

breathing and rocket  propuls ion a l t e r n a t i v e s  are shown Cl8, 191. For Mach 
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numbers zero to three t u r b o j e t  a i r  breathing systems have the h ighes t  

performance. Above Mach number o f  three, turb ine i n l e t  temperatures const ra in  

performance, and then the ramjet  becomes more a t t r a c t i v e .  A t  about Mach 

number o f  s ix,  the performance o f  the ramjet i s  g rea t l y  reduced. This i s  due 

to d i s s o c i a t i o n  o f  the reac t i on  product which i s  caused by slowing the 

supersonic f low t o  subsonic flow. Therefore, i t  i s  more e f f i c i e n t  to a l l o w  

the engine i n t e r n a l  f l o w  to remain a t  supersonic speed. Thus f o r  Mach number 

o f  s i x  and beyond, the f i x e d  geometry scramjet i s  c l e a r l y  super ior  f o r  

p r o p e l l i n g  a vehic le  a t  hypersonic speed. Hydrogen has been selected as the 

f u e l  f o r  the scramjet due to i t s  c a p a b i l i t y  o f  cool ing the engine and the 

a i r f rame and a1 so because o f  i t s  high impulse l eve l .  

The scramjet engine i s  made up o f  several i d e n t i c a l  modules and i t  i s  

i n s t a l l e d  underneath the a i r c r a f t  as shown i n  Fig. 2.2. As p a r t  o f  the engine 

design concept, the forebody o f  the a i r c r a f t  ac ts  as an i n l e t  (a i r f rame 

in tegrated [19]) f o r  precompression and the af terbody as a nozzle f o r  pos t  

expansion. Since the vehic le  compresses the a i r f l o w  i n  the v e r t i c a l  

d i rect ion,  the module s ize w a l l s  are made'wedge shaped to  compress the f low 

ho r i zon ta l l y .  This tends to  minimize the flow d i s t o r t i o n .  The diamond shape 

s t r u t  i s  located a t  the minimum cross sect ional  area to complete the 

compression and i t  a l s o  provides the fue l  i n j e c t i o n .  Each module i s  made up 

of i n l e t ,  combustor and nozzle regions. 

The i n l e t  reg ion s t a r t s  w i t h  the forebody o f  the veh ic le  and ends up w i t h  

the minimum cross sect ional  area o f  each module. I n  the f i r s t  par t ,  the a i r  

flow i s  compressed by the obl ique shock generated from the forebody before i t  

enters the engine. For numerical solut ion, the f l ow  i s  bes t  represented by 

the Navier-Stokes equation i n  the actual i n l e t  area o f  the engine. Using the 

Euler equation away from the wal l  and the boundary l a y e r  equation near the 
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Fig. 2.1 Propulsion a1 t e rna  tives. 

Fig.  2.2 Airfram-integrated supersonic  combustion ramjet .  
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w a l l  region can be complicated by the obl ique shock i n t e r a c t i o n  w i t h  the 

boundary layer.  This can cause the f low separation which means f low can n o t  

be represented accurate ly  by these equations. The chemistry i s  frozen i n  t h i s  

reg ion  Three-dimensional Navier-Stokes equations have been 

employed by Kumar C31 to i nves t i ga te  the f low f i e l d  i n  t h i s  reg ion w i t h  a 

reasonable success. Chitsomboon e t  a l .  C41 have employed the parabol ized 

Navier-Stokes equations w i t h  1 i m i  ted success. 

w 

( -cch >>-cflo 1 . 

I 
I 
I 
I The combustor region i s  by f a r  the most complex p a r t  o f  the scramjet  

1 engine. As a r e s u l t ,  a great  deal o f  research i s  d i rec ted  toward b e t t e r  

understanding o f  the combustor f l o w  f i e l d .  The f l o w  i n  t h i s  reg ion i s  usua l l y  

supersonic b u t  i t  can be both supersonic and subsonic (Fig. 2.3). The f l u i d  

dynamics becomes complicated by the fuel i n j e c t i o n ,  flame holding, chemistry, 

r a d i a t i o n  and turbulence. The f low f i e l d  i n  t h i s  region i s  represented by the 

e l l i p t i c  Navier-Stokes ( i nc lud ing  turbulence, chemistry and r a d i a t i o n )  

equations. I n  the f a r f i e l d  (downstream o f  the fuel i n j e c t i o n  s t r u t  where the 

f l o w  i s  only supersonic) the f l o w  can be represented by the parabol ized 

Navier-Stokes equations C41. 

I 

I 

The nozzle and subsurface o f  the afterbody provide about f i f t y  percent o f  

the t h r u s t  a t  Mach number s i x  C191. The f low through the nozzle i s  supersonic 

and the chemistry i s  frozen. However the combustor e x i t  flow consis ts  o f  

mu1 ticomponents o f  the reac t i ng  species, mu1 t i p l e  shock, and 3-0 viscous 

e f f e c t s .  The f low can be represented by the parabolized Navier-Stokes 

equa ti on s . 
2.2 Basic Governing Equations 

The two-dimensional Navier-Stokes and species c o n t i n u i t y  equations a re  

represented i n  physical  domain by 
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where vectors U, F, G and H are expressed as 

u =  ~~1 Pf j 

F =  

rpu 
PU + zxx 1 -  

XY 
puv + z 

(PE + TXX’ u + zxy v + qcx 
af, 

G =  

The viscous s t ress 

7 

(2.1) 

L W f j  - PD ax J - 
PV puv + z Y X  )=[I pv2 + z 

P V f j  - PD ay 

YY 

- W  xy + qcy + QRy YY a f j  
( p E + z  ) v + z  

tensors i n  the F and G terms o f  Eq. (2.1) are given as 

(2.2a) 
7 = P - A(9&(+$ au av - 2 p x  au 
xx Y 

The q u a n t i t i e s  qcx and qcy i n  the F and G terms are the components o f  the 

conduction heat f l u x  and are expressed as 

where T 
= h? + I Cp dT; To = 0 K 

hj J To j 
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I t  should be noted here t h a t  D represents the e f f e c t i v e  b inary d i f f u s i o n  

c o e f f i c i e n t  and i s  used f o r  a l l  species. Assuming t h a t  the Lewis number i s  

un i ty ,  Eqs. ( 3 )  reduce t o  (see Appendix A )  

YP ae 
qcx= - 

where 
e = h - P/p 

The molecular v i s c o s i t y  p i s  assumed to be temperature dependent and i t  i s  

evaluated f o r  i n d i v i d u a l  species from the Sutherland' s formula 

3/2 T + S T 0 

T + S  C r =  Cr (-1 o T  
0 

(2 .5)  

where p, and To are reference values and S i s  the Sutherland constant. The 

t o t a l  i n t e r n a l  energy E i n  Eq. (2.1) i s  given by 

Speci f ic  r e l a t i o n s  are needed f o r  the chemistry and thermodynamic models 

and for the r a d i a t i v e  transport.  The chemistry and thermodynamic models are 

discussed b r i e f l y  i n  the f o l l o w i n g  sections. The formulat ions f o r  the 

r a d i a t i v e  t ranspor t  are presented i n  Sec. 3. 

2.3 Chemistry Model 

For the numerical so lu t i on  o f  react ing flows, a chemistry model i s  needed 

t o  represent the combustion process. The chemistry model used i n  t h i s  study 

i s  the two-step global  f i n i t e  r a t e  hydrogen-air combustion model developed by 
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Rogers and C h i n i t z  c201. This chemistry model was deduced from a 28 r e a c t i o n  

model and i t  i s  adequate for  temperatures between 1,000 K and 2,000 K and f o r  

equivalence r a t i o s  between 0.2 and 2.0. I n  the f i r s t  step, hydrogen and a i r  

r e a c t  and produce hydroxyl r a d i c a l  and i n  the second step, hydroxyl r a d i c a l  

and hydrogen r e a c t  t o  produce water vapor. The react ions are expressed as 

(2.7) 
Kf 

H2 + O2 2 2 OH - 
K b l  

K 
20H + HZ - f2 2 H20 (2.8) 

v 

Kb2 

where K and Kb represent the forward and reverse reac t i on  r a t e  

constants respect ive ly .  The r e l a t i o n s  fo r  K are obtained from an Arhenius 

equation as 

fi i 

fi 

K = Ai($)T Ni exp(-Ei/RT) 
fi 

The values o f  the parameters Ai($), Ni, and E i  i n  Eq. (2.14) are 

AI($) = (8.917 4 + 31.433/$ 

- 28.95)~ - cm 3 /g-mol-S 

El = 4865 Cal/mol; N1 = -10. 

A2($) = (2. + 1.333/+ 

- . 8 3 3 $ ) ~ 1 0 ~ ~  - cm 6 2  /mol - s 

'E2 = 42500 Cal/mol; N2 = -13 

(2.9) 
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where I$ i s  the fue l -a i r  r a t i o .  The reverse r a t e  constants can be evaluated by 

where 

K1 = 26.164 exp(-8992/T) 

K2 = (2 .682~10-~)  (TI exp(69415/T) 

(2.10) 

Knowing the reac t i on  ra tes  (K and Kb 1, the production o f  species can be 

evaluated from the law of mass action. Consider the general chemical reac t i on  
fi i 

where v '  and v" represent the s to ich iometr ic  coe f f i cen ts  o f  the reactants 

and products respect ive ly .  The law o f  mass a c t i o n  s tates t h a t  the r a t e  o f  

change of concentrat ion o f  species j by reac t i on  i i s  given by C211 

j,i j,i 

(Ej) = ( v i ;  - vi i)  [Kf rI c j  - Kb n c j  (2.12) 
N V i i  

i j=l i j = l  

The n e t  r a t e  o f  product ion o f  species j i n  a l l  react ions i s  given by 

m 

i =1 
E j  = c (Ej+ (2.13) 

where m i s  the number o f  reactions. F ina l l y ,  the chemistry source terms, on a 

mass basis, are found by mu l t i p l y ing  the molar changes and corresponding 

molecular weight 

(2.14) 
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By apply ing the law o f  mass ac t i on  to the global  model, the chemistry source 

terms o f  the four species are obtained as 

€02 = - K f l  ‘H2 ‘02 + Kbl ‘;H 

‘H20 = 2(Kf2 c2 OH c Hz - Kb2 ‘i20) 

E H Z  - - EOZ - 1/2 t” 0 
2 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

2.4 Thermodynamic Model 

The s p e c i f i c  heat o f  i n d i v i d u a l  species, C , assumed t o  be a l i n e a r  
P i  

funct ion o f  temperature, i .e., 

(2.19) j = a . T + b  ‘P, J 
J 

where a j  and b j  a re  constants which a re  obtained by curve f i t t i n g  the 

thermochemical data of Ref. 22. The numerical values o f  these constants are 

given i n  Table 1. The s p e c i f i c  heat o f  the mixture are computed by summing 

s p e c i f i c  heat o f  i n d i v i d u a l  species weighted by species mass f r a c t i o n  

m 

The s t a t i c  enthalpy o f  the mixture can be expressed as 

m T 
h = Chi + .f C dT] f j  

j = l  TO P1 

(2.20) 

(2.21) 

The t o t a l  enthalpy can now be evaluated as 
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(2.22) 2 2  H = h +  0.5 (U + V 

Combining Eqs. (2.21) and (2.221, the total enthalpy i s  expressed as 

2 

H = C Chi +-T 
2 2  ai T 

+ bi TI fi + 0.5 ( u  + v 1 0 
m 

i =1 
(2.23) 

where hy 

temperature (To = 0 K).  

by a mass weighted summation over a l l  the species as 

i s  the sensible enthalpy of i n d i v i d u a l  species a t  a reference 

The gas constant f o r  the mixture a l s o  i s  evaluated 

m 

j=l 
Ti = C fj Rj (2.24) 

The equation o f  s ta te  f o r  the mixture o f  the gases, therefore can be w r i t t e n  

as 

P = PRT (2.25) 



Table 2.1 Numerical Values o f  Various Constants 

Species H' ( J/ kg 1 a b 
~ ~~ ~ 

02 -271267.025 0.119845 947 . 937 
H20 -13972530.24 0.43116 1857 -904 

HZ -4200188.095 2.0596 12867.46 

OH +1772591.157 0.16564 1672 -813 

N2 -309483.98 0.10354 1048.389 
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3. RADIATION TRANSPORT MODELS 

I n  order to inc lude the e f f e c t s  o f  r a d i a t i v e  i n t e r a c t i o n  i n  a physical  

problem, i t  i s  essent ia l  t o  accurately model the absorption-emission 

c h a r a c t e r i s t i c s  o f  p a r t i c i p a t i n g  species and provide a c o r r e c t  formulat ion o f  

the r a d i a t i v e  t r a n s f e r  processes. These a re  discussed b r i e f l y  i n  t h i s  

sect ion . 
3.1 Radiation Absorption Models 

Many models a re  a v a i l a b l e  i n  the l i t e r a t u r e  to represent the absorption- 

emission c h a r a c t e r i s t i c s  o f  molecular species; a review o f  important model s i s  

a v a i l a b l e  i n  [ll]. Perhaps the simplest model i s  the gray gas model where the 

absorpt ion c o e f f i c i e n t  3s assumed t o  be independent o f  the wavelength. Many 

nongray models are a l s o  a v a i l a b l e  i n  the l i t e r a t u r e .  Both gray and nongray 

absorpt ion models a re  discussed here b r i e f l y .  

3.1.1 Gray Gas Models 

I n  gray model, i t  i s  assumed t h a t  the absorpt ion c o e f f i c i e n t  i s  

independent o f  wavelength. This i s  r a r e l y  a p h y s i c a l l y  r e a l  f s t i c  approxi- 

mation b u t  i t  serves as an i n i t i a l  step f o r  studying the e f f e c t  o f  r a d i a t i v e  

heat t ransfer .  The absorption coe f f i c i en t  for  gray gas i s  evaluated by 

employing the Planck mean absorption coef f ic ient  as fo l l ows  

n 
(3.1) 

By assuming t h a t  w i t h i n  a band the Planck func t i on  does n o t  vary s i g n i f i c a n t l y  

w i t h  the wave number and evaluat ing i t s  value a t  the band center, the r e l a t i o n  

for  K f o r  a single-band gas can be w r i t t e n  as 
P 



(3.2) 

I where wo represents the band center. For a multiband gaseous system, K i s  
I 
I 

P 
given by 

(3.3) 

where wk represents the band center o f  the k t h  band o f  a p a r t i c u l a r  species. 

For a spec i f i c  band o f  a given gas, the i n teg ra ted  band i n t e n s i t y  Sk i s  

def ined as 

S u b s t i t u t i n g  Eq. (3.4) i n t o  Eq. (3.31, K i s  expressed a s  
P 

P, n 

(3.4) 

(3.5) 

where 

I K  - 
= exp lC2 %'I' 

The Pj i s  species p a r t i a l  pressure and C 1  and C2 a r e  constants. Note t h a t  

K i s  a funct ion o f  temperature and species p a r t i a l  pressure. 
P 

3.1.2 Nongray Gas Models 

Important nongray models avai lab le i n  the l i t e r a t u r e  a re  as fo l low:  

1. Line Models: 

(a )  Lorentz 

(b) Doppler 
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( c )  Lorentz-Doppler (Voigt )  

2. Narrow Band Models 
(a)  Elsasser 
( b )  S t a t i s t i c a l  
( c )  Random-El sasser 
( d )  Quasi-Random 

3. Wide Band Models 
( a )  Box o r  C o f f i n  

(b )  Modif ied box 
( c )  Exponential 

(d)  Ax ia l  

The r e l a t i v e  importance and range o f  a p p l i c a b i l i t y  o f  these models are 

discussed i n  C111. I n  the moderate temperature range (500-5000K) use o f  the 

wide band models and co r re la t i ons  provide s u f f i c i e n t  accuracies. These models 

render s i g n i f i c a n t  computational e f f i c i e n c y  over the l i n e  by l i n e  o r  narrow 

band models. 

The expression f o r  the t o t a l  band absorptance i s  given as 

where both, w and K~ have u n i t s  o f  cm-', D i f f e r e n t i a t i o n  o f  Eq. (3.6a) gives 

OD 

(3.6b) 

( 3 . 6 ~ )  

A'(y) = 1 K~ exp ( - K J )  dw - cm -2 

A"(y) = 1 - K: exp ( - K J )  dw - cm -3 

0 
-QD 

0 

The r a d i a t i v e  f l u x  term usua l l y  involves mu1 t i p l e  i n t e g r a l s  even f o r  the 

simple geometries. As r e s u l t  numerical c a l c u l a t i o n  o f  r a d i a t i v e  f l u x  f o r  

energy t rans fe r  between two p a r a l l e l  p l a t e s  becomes very time consuming. 

Therefore i t  i s  des i rab le t o  replace the r e l a t i o n  f o r  the t o t a l  band 

absorptance as given by Eq. (3.6a) w i t h  a continuous c o r r e l a t i o n  C6-91. 
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Numereous c o r r e l a t i o n s  are ava i l ab le  i n  the l i t e r a t u r e  f o r  the wide band 

absorptance. The f i r s t  c o r r e l a t i o n  t o  s a t i s f y  the l i n e a r ,  square-root, and 

l o g r i t h m i c  l i m i t s  o f  the wide band absorptance was proposed by Edward and 

Menard [231. The most widely used c o r r e l a t i o n  i s  the Tien and Lowder 

continuous c o r r e l a t i o n  and t h i s  i s  given by C61 

where 
(3.7) 

f ( p )  = 2.94 Cl-exp(-2.6p)I 

2 B = B  Pe 

The form o f  f ( p )  was-chosen t o  give agreement w i t h  the c o r r e l a t i o n  o f  Edward 

and Menard. This c o r r e l a t i o n  i s  employed i n  t h i s  study f o r  nongray gas 

formul a ti on . 
3.2 Radiat ive Flux Equations 

The equations of r a d i a t i v e  t ransport  are expressed general ly i n  in tegro-  

d i f f e r e n t i a l  form; the i n t e g r a t i o n  involves both frequency spectrum and 

phyical  coordinates. I n  many r e a l  i s t i c  three-dimensional physical  problem, 

the complexity of the r a d i a t i v e  t ranspor t  equations can be overcome by 

i n t r o d u c t i o n  of the " t rangent s lab approximation." This approximation t r e a t s  

the gas l aye rs  as a one-dimensional s lab i n  evaluat ion o f  the r a d i a t i v e  

f l ux .  Tangent slab approximation i s  employed i n  t h i s  study. Therefore, the 

r a d i a t i v e  t ranspor t  i s  considered only i n  the normal d i r e c t i o n  o f  the flow. 

It should be pointed o u t  t h a t  t h i s  approximation i s  n o t  used f o r  any other  

f 1 ow v a r i  ab1 es . 



18 

3.2.1 Basic Formulation 

The rada t i ve  t ranspor t  equations i n  the present study are obtained f o r  a 

gas conf ined between two p a r a l l e l  p lates (Fig. 5.1). For one-dimensional 

absorbing-emi t t i n g  medium w i t h  di f fuse boundaries the general equation f o r  the 

r a d i a t i v e  f l u x  under the condi t ion of thermodynamic e q u i l i b r i u m  (LTE) i s  given 

by C5, 81 241. 

z 
+ 271 Bh(t)  E2 (z,-t) d t  - 2x 

0 A 
B h ( t )  E 2 ( t - t h )  d t  ( 3 . 8 )  

where 
zh = K ~ Y ;  z = K ~ L  Oh 

The q u a n t i t i e s  BIA and Bgh i n  Eq. (3.8) represent the spect ra l  surface 

For 

non - re f l ec t i ng  surfaces under the condi t ions of LTE the expression f o r  the 

spect ra l  r a d i a t i v e  f l u x  is expressed i n  terms of the wave number as (see 

Appendix B) 

r a d i o s i t i e s ,  and f o r  non-ref lect ing surfaces Blh - - ell - - clh eblh. 

qRUhW) = elW - e2u [e, ( t )  - elWl E2 (zW - t) d t  

b 
0 

where En( t )  i s  an exponential i n t e g r a l  funct ion defined by 

(3.9) 

By employing the exponential kernal approxima t i o n  151 
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Eq. (3.9) i s  expressed as  

3 - '2 (t-f,) f 

- I 0 w ~ 2 w  ( t )  e d t l  
f 

W 

where 

Equation (3.11) i s  expressed i n  physical  coordinate as 

By d i f f e r e n t i a t i n g  Eq. (3.12) w i t h  respect to y, one obta ins 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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such t h a t  

I t  should be noted here t h a t  f o r  nongray gases, the divergence o f  

r a d i a t i v e  f l u x  i s  used as a source term i n  the energy equation to avoid a 

scheme dependency i n  the computation. 

3.2.2 Gray Formulation 

I n  the previous section, i t  was observed t h a t  the r a d i a t i v e  f l u x  terms 

are represented by an integro-di f ferent ia1 equation. Solv ing these equations 

a r e  very time consuming, even w i t h  the vector processor such as VPS-32. 

Therefore, a pesudo-gray model i s  selected f o r  e f f i c i e n t  parametric studies. 

To express the r a d i a t i v e  f l ux  f o r  a gray medium, one may assume t h a t  cw i s  

ncw independent o f  the wave number. Therefore, Eq. (3.9) f o r  a gray medium i s  

w r i t t e n  as 

7 

Upon subs t i  ,uting the exponential kernal approximation, Eq. (3.101, i n t o  Eq. 

(3.151, qR(z) i s  expressed as 

(3.16) 
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To solve the r a d i a t i v e  f l u x  term f o r  the gray medium, one can transform 

Eq. (3.15) i n t o  the physical  coordinates and then apply any o f  the standard 

i n t e g r a t i o n  techniques t o  evaluate the r a d i a t i v e  f l u x  term. If t h i s  i s  

desirable,  then there i s  no need t o  make exponential kernal approximation and 

ob ta in  Eq. (3.16). The main reason f o r  employing the exponential kernal  

approximation i n  the gray formulat ion i s  to transform the i n t e g r a l  equation 

i n t o  a d i f f e r e n t i a l  equation. Solving a r a d i a t i v e  f l u x  equation i n  

d i f f e r e n t i a l  form i s  n o t  only convenient b u t  computational ly e f f i c i e n t .  For 

the present case, d i f f e r e n t i a t i n g  Eq. (3.16) twice by using the L e i b n i t z  r u l e  

r e s u l t s  i n  

- 

+ (e, - e,) + 3 -7- de(z) (3.17) 

A s u b s t i t u t i o n  o f  Eq. (3.17) in to  Eq. (3.16) gives a second order 

nonhomogenious ord inary d i f f e r e n t i a l  equation as 

I t should be pointed o u t  t h a t  i f  Eq. (3.15) 

approximation i s  appl ied the c o e f f i c i e n t  on 

(3.18) 

i s  d i f f e r e n t i a t e d  and then Kernal 

the r i g h t  side o f  Eq. (3.18) w i l l  

be four. Employing the method o f  d i f f e r e n t i a l  approximation instead o f  

exponential kernal approximation, Eq. (3.15) may be recas t  as a d i f f e r e n t i a l  

equation which i s  o f  the same form as Eq. (3.181, except the c o e f f i c i e n t  o f  

the second d i f f e r e n t i a l  i s  3/4 instead of u n i t y  [5]. Equation (3.18) requi res 

two boundary condit ions, which f o r  nonblack d i f f u s e  surfaces are given as (see 

Appendix C). 
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Note t h a t  the r i g h t  sides o f  Eqs. (3.19) d i f f e r  from zero only i f  molecular 

conduction i s  neglected. I n  t h i s  study, o ther  modes o f  energy t rans fer  are 

included. Therefore, the terms on r i g h t  sides reduce to zero. 

To evaluate the r a d i a t i v e  flux, Eqs. (3.18) and (3.19) are transformed 

i n t o  the phys ica l  coordinates as 

The o p t i c a l  coordinate and thickness used i n  the above transformat ion a r e  
def ined as 

3.2.3 Nongray Formulat ion 

The r a d i a t i v e  f l u x  equation f o r  nongray gases i s  obtained by s u b s t i t u t i n g  

Eq. (3.13) i n t o  Eq. (3.14) as 
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(3.21) 

For a multi-band gaseous system, the above i s  expressed as 

It should be pointed o u t  t h a t  the fo l lowing r e l a t i o n  has been employed t o  

ob ta in  Eq. (3.22) 

where N represent the number of bands i n  a mult iband system. Now, u t i l i z i n g  

the d e f i n i t i o n  o f  band absorptance and i t s  de r i va t i ves  as given i n  Eqs. (3.61, 

and evaluat ing the value o f  Planck funct ion a t  the center o f  each band Eq. 

(3.22) i s  expressed as 



Equation (3.23) i s  i n  proper form for obta in ing the nongray so lut ions o f  

molecular species. However, i n  order to be able t o  use the band model 

corre la t ions,  these equations must be transformed i n  terms o f  the c o r r e l a t i o n  

quant i  t i es .  The c o r r e l a t i o n  q u a n t i t i e s  and d e t a i l  o f  transformations are 

given i n  Ref. 24. A f t e r  the transformation, Eq. (3.23) i s  w r i t t e n  as 

(3.24) 

Note t h a t  A"(u)  express the second de r i va t i ve  o f  x(u) w i t h  respect  to u and 

dqR dqR - dqR du = [PS(T)/Aol du c iy -du5  

U Y  U' 

uO uO 
BY de f i n ing  - = 7: and - * f Eq. (3.29) i s  expressed as 

I F  ( z )  + F (213 (3.25) 3 uo 
+'z i =1 7- 1Wi 2wi 

It i s  o f ten  des i rab le and convenient to express the above equation i n  

terms o f  i' r a t h e r  than x" . This i s  accomplished by i n t e g r a t i n g  Eq. 
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(3.25) by parts.  

and the r e s u l t  i s  given by 

The d e t a i l s  o f  the i n teg ra t i on  by par ts  i s  given i n  Ref. 24 

Equation (3.26) and the Tien and Lowder co r re la t i on  given by Eq. (3.7) can be 

used t o  evaluate the r a d i a t i v e  f l ux .  

4. METHOD OF SOLUTION 

The g r i d  generation and so lu t i on  procedures f o r  the governing equations 

are  b r i e f l y  discussed i n  t h i s  section. 

4.1 Gr id  Generation 

The g r i d s  are generated using an a lgebra ic  g r i d  generation technique 

s i m i l a r  to the one used by Smith and Weigel [251. From the computational 

p o i n t  o f  view, i t  i s  des i rab le to have uni form rectangular  g r i d  enclosed i n  

p a r a l l e l  piped, and the e x t e r i o r  o f  the p a r a l l e l  piped represent  the phys ica l  

boundaries. To have such gr ids,  the body-f i  t t e d  coordinate i s  transformed 

l i n e a r l y  from physical  domain (x ,y)  to computational domain ( 5 , ~ )  as f o l l o w  
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where 

The g r i d  should be concentrated i n  the regions o f  h igh gradient  to accurately 

capture the solut ion.  Therefore more g r i d s  a r e  requ i red  near the s o l i d  

boundaries. The concentrat ion o f  the g r i d  i n  11 d i r e c t i o n  can be 

accompl i shed by 

(B,+l) - ( 8  -1) ExpC-C(r)-l+a)/(l-a)l Y - 
11' IZa+l)  t1 +txpLlC(q- l+a) / [ l -a)J}  (4.2) 

where 

I f  a i s  equal t o  zero (a=O) the compression takes place only near the 

lower w a l l  (q=O), and if, a i s  set equal to one h a l f  (a=1/2), the 

compression takes place near both walls. The By has a value between one and 

two, and as i t  gets c lose r  to one, the g r i d  becomes more concentrated near the 

walls. Employing t h i s  concentration, Eq. (4.le) interms o f  i s  w r i t t e n  as 

where 
0 < ; < 1  

(4.3) . 

The g r i d  used i n  t h i s  study i s  shown i n  Fig. 4.1. It should be not iced t h a t  

the g r i d  i s  concentrated i n  the normal d i r e c t i o n  and kept uni form i n  the flow 

d i r e c t i o n  . 
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.. 



4.2 Solut ion o f  the Govening Equations 

The governing equations, Eqs. (2.1), are expressed i n  the computational 

domain as 
A A A 

au + a~ + a~ + = 

where 

A 

U = UJ 

A 

F = Fy, - Gx, 

A 

H = HJ 

Equatfon (4.4) i s  d i s c r e t i z e d  temporally and w r i t t e n  as 

A A 

A 

(4.4) 
I 

(4.5) 

(4.7) 

A s u b s t i t u t i o n  of Eq. (4.7) i n t o  Eq. (4.5) gives the temporal ly d i sc re te  

equation i n  d e l t a  form as 

A A CL 

aH ^n+l - aF + aG + ;]n 
au 

[ I  + A t - ]  AU - - A t  [T q (4 .8 )  

A 

where in+' - in i s  expressed as A?+', % i s  the Jacobian ma t r i x  o f  H and I i s  

the i d e n t i t y  matr ix .  
au 

Once the temporal d i s c r e t i z a t i o n  used t o  cons t ruc t  Eq. (4 .8)  has been 
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performed, the r e s u l t i n g  system i s  s p a t i a l l y  d i f ferenced using the unspl i t 

MacCormack predic tor -corrector  scheme C261. This  r e s u l t s  i n  a s p a t i a l l y  and 

temporal ly discrete,  simultaneous system o f  equations a t  each g r i d  p o i n t  C16- 

171. Each simultaneous system i s  solved using the Householder technique [27, 

281 i n  combination wi th  the MacCormack technique which i s  then used to advance 

the equations i n  time. The modif ied MacCormack scheme then becomes 

A A 

[I  + A t  (-). a H n  .] AUij Ax = - A t  [- a i  + aG + i ] y j  
au 'J ac 5 

An ^n+l 
U i j  - Uij + A Uij 

(4.9a) 

(4.9b) 

Uij ^n+l - - ^n Uij + 0.5 [AUij *n+l + AUij A X ]  (4.10b 1 

Equations (4.9) and (4.101 are used t o  advance the s o l u t i o n  from time n 

to n+l  and t h i s  process i s  continued u n t i l  a desired i n t e g r a t i o n  time has been 

reached. 

For time accurate solut ion, the computational time step, A t ,  must s a t i s f y  

the smal lest  time scales o f  the f l u i d  and chemistry, i.e., A t  = min 

(Atf, Atch). I f  the steady state solut ion i s  sought (as i n  t h i s  study), i t  

i s  poss ib le  t o  speed up the convergence by using a l a r g e r  time scale 

(At f  = A&) This i s  

due to the so-cal led precondi t ion matr ix ( le f t -hand side bracket i n  Eq. 

w i thou t  in t roducing any i n s t a b i l i t i e s  i n  the solut ion,  

(4.811,. the purpose o f  which i s  to normalize the various time scales so t h a t  

they are o f  the same order C171. 
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The r a d i a t i v e  f l u x  term i s  evaluated f o r  both gray and nongray gaseous 

systems. I n  the nongray gas formulation, the divergence o f  the r a d i a t i v e  f l u x  

i s  evaluated using a cen t ra l  d i f f e renc ing  scheme and i s  t reated as r a d i a t i v e  

I source term i n  the energy equation. Since the r a d i a t i v e  f l u x  term i s  i n  

i n t e g r o - d i f f e r e n t i a l  form, u n l i k e  the other f l u x  terms which are only i n  a 

I d i f f e r e n t i a l  form, i t  i s  uncoupled and treated separately. I n  the gray gas 

formulation, Eqs. (3.20) are d i sc re t i zed  by cen t ra l  d i f ferencing, forming a 

t r i d i a g o n a l  matrix. This t r i d iagona l  matr ix can be solved e f f i c i e n t l y  by the 

Thomas a1 g o r i  thm. 

5. RESULTS AND DISCUSSION 

Based on the theory and computational procedure described i n  the previous 

sections, a computer code was developed t o  solve the Qo-dimensional Navier- 

Stokes equations f o r  reac t i ng  and r a d i a t i n g  supersonic laminar flows. Two 

d i f f e r e n t  geometries are employed f o r  various parametric studies. One i s  a 

channel w i t h  two p a r a l l e l  p la tes  a distance L a p a r t  (Fig. 5.1); the other i s  a 

channel w i th  a compression-expansion ramp a t  the lower boundary (Fig. 5.2). 

The freestream condi t ions a t  the i n l e t  are obtained from Refs. 1-4. For the 

temperature range expected i n  the scramjet combustor, the r a d i a t i n g  species 

t h a t  are important are OH and H20. The spectral  in format ion and c o r r e l a t i o n  

q u a n t i t i e s  needed f o r  these species are obtained from Refs. 6-9 and 29. Both 

reac t i ng  and nonreacting f lows are considered. Results f o r  the nonreacting 

f lows are presented i n  Figs. 5.3-5.10 and f o r  the reac t i ng  f lows r e s u l t s  are 

presented i n  Figs. 5.11-5.16. 
I 

For the p a r a l l e l  p l a t e  case (3 cm x 10 cm), the i n f l o w  condi t ions are 

and 

= 0.4. Results f o r  the r a d i a t i v e  f l ux ,  as a func t i on  o f  the nondimen- 

, 

= 0.5, fo2 = 0.1 and FH20 P, = 1 atm, T, = 1,700 K, M, = 3.0, 

fN2 



31 

s ional  l o c a t i o n  along the flow, are i l l u s t r a t e d  i n  Fig. 5.3 f o r  var ious 

distances from the lower plate.  I t  i s  noted t h a t  the r a d i a t i o n  f l u x  i s  

approximately zero i n  the center o f  the p la te (y  = 1.5 cm) and i s  considerably 

higher towards the top and bottom plates. This, however, would be expected 

because o f  the symmetry o f  the problem and r e l a t i v e l y  higher temperature near 

the boundaries. The o s c i l l a t i o n s  i n  r e s u l t s  are due t o  the shock r e f l e c t i o n  

from the boundaries. 

The r e s u l t s  f o r  r a d i a t i v e  f l u x  are i l l u s t r a t e d  i n  Figs. 5.4 and 5.5 as a 

funct ion of the nondimensional y-coordinate. For P = 1 atm, the r e s u l t s  

presented i n  Fig. 5.4 fo r  d i f f e r e n t  water vapor concentrat ions i n d i c a t e  t h a t  

the r a d i a t i v e  i n t e r a c t i o n  increases slowly w i t h  an increase i n  the amount o f  

the gas. The r e s u l t s  f o r  50% H20 are i l l u s t r a t e d  i n  Fig. 5.5 f o r  two 

d i f f e r e n t  pressures (P, = 1 and 3 a m )  and x- locat ions (x=5 and 10 cm). I t  

i s  noted t h a t  the increase i n  pressure has dramatic e f f e c t s  on the r a d i a t i v e  

i n te rac t i on .  The conduction and r a d i a t i o n  heat t r a n s f e r  r e s u l t s  are compared 

i n  Fig. 6 f o r  P = 3 atm and f o r  two d i f f e r e n t  x- locat ions (x = 5 and 10 cm). 

The r e s u l t s  demonstrate t h a t  the conduction heat t r a n s f e r  i s  r e s t r i c t e d  to the 

reg ion  near the boundaries and does not  change s i g n i f i c a n t l y  from one x- 

l o c a t i o n  t o  another. The r a d i a t i v e  i n te rac t i on ,  however, i s  seen to be 

impor tant  everywhere i n  the channel, and t h i s  can have s i g n i f i c a n t  i n f l uence  

on the e n t i r e  f l o w f i e l d .  The r e s u l t s  presented i n  Figs. 5.4-5.6 should be 

p h y s i c a l l y  symmetric; but, due t o  the predic tor -corrector  procedure used i n  

the McCormack's scheme, they e x h i b i t  some unsymmetrical behavior. 

For the p a r a l l e l  p l a t e  geometry, a comparison o f  the divergence o f  

r a d i a t i v e  f l u x  f o r  gray and nongray models i s  presented i n  Fig. 5.7 f o r  two 

d i f f e r e n t  y- locat ions (y = 0.2 and 1.6 cm). The physical  and i n f l o w  

condi t ions i n  t h i s  case are exact ly  the same as f o r  Fig. 5.3. The gray gas 
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formulat ion i s  based on the Planck mean absorption c o e f f i c i e n t  which accounts I 

fo r  the d e t a i l e d  in format ion on d i f f e r e n t  molecular bands, As such, t h i s  

approach i s  re fer red to as the ''pseudo gray gas formulation." As mentioned 

before, Tien and Lowder's c o r r e l a t i o n  (Ref. 6 )  i s  used i n  the nongray formula- 

t ion.  It i s  noted t h a t  the r e s u l t s  f o r  the gray model are about 10-20 percent 

I h igher than f o r  the nongray model. For the physical  condi t ions o f  the 

problem, no s i g n i f i c a n t  d i f f e rence  i n  r e s u l t s  i s  observed f o r  the two y- 

locat ions.  Both gray and nongray r e s u l t s  are seen to increase w i t h  x because 

the pressure and temperature, i n  general, increase i n  the f low d i rec t i on .  The 

s o l u t i o n  o f  the gray formulat ion i n  ODE form proves to be about ten times more 

e f f i c i e n t  than the s o l u t i o n  o f  the nongray formulat ion on the VPS-32 computer 

( t h e  gray formulat ion uses 0.056 CRU's per i t e r a t i o n  wh i l e  the nongray 

formulat ion uses 0.57 CRU's per i t e r a t i o n ) .  As such, a l l  o ther  r e s u l t s  

presented i n  t h i s  study have been obtained by using the pseudo gray gas 

formulation. 

The second geometry (Fig. 5.2) was selected t o  study the e f f e c t s  o f  

shocks on the r a d i a t i v e  heat t ransfer.  The physical  dimensions considered f o r  

ob ta in ing  s p e c i f i c  r e s u l t s  are L = 3 cm, X 1  = 3 cm, X2 = 3 cm, Lx = 10 cm, and 

a = loo. I n  general, the i n l e t  condi t ions considered are the same as f o r  the 

p a r a l l e l  p l a t e  geometry, i.e., Pa = 1 atm, TaD = 1,700 K, fHZ0 = 0.5. 

Results for  t h i s  case a t  steady state are  given i n  Figs. 5.8 and 5.9. 

For M, = 4.5, only the r e s u l t i n g  pressure contours are shown i n  Fig. 5.8 and 

the r e s u l t s  for  the r a d i a t i v e  heat f l u x  are i l l u s t r a t e d  i n  Fig. 5.9 f o r  

M, = 3 and 4.5. The pressure contours c l e a r l y  show the existence o f  the 

shock and expansion fan. The r e s u l t s  presented i n  Fig. 5.9 show a s i g n i f i c a n t  

increase i n  the r a d i a t i v e  heat f l u x  over the ramp f o r  MaD = 4.5. The 

o s c i l l a t o r y  behavior observed towards the end o f  the channel f o r  M, = 3 i s  
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due to the e f f e c t  o f  the shock r e f l e c t i o n  from the upper boundary. A t  both 

Mach numbers, only a s l i g h t  v a r i a t i o n  i n  r e s u l t s  i s  noted f o r  d i f f e r e n t  y- 

l oca t i ons  i n  the channel. 

For the physical  condi t ions o f  Fig. 5.2 and Ma = 4.5, the r a d i a t i v e  

f l u x  r e s u l t s  along the channel are compared i n  Fig. 5.10 a t  two d i f f e r e n t  y- 

l o c a t i o n s  (y = 0.0 and 1.5 cm) and f o r  two d i f f e r e n t  compositions o f  gaseous 

mixture, 25% H20 + 75% a i r  and 25% H20 + 25% OH + 50% a i r .  The r e s u l t s  show 

t h a t  the r a d i a t i v e  i n t e r a c t i o n  i s  r e l a t i v e l y  higher f o r  the case o f  25% H20 

than f o r  25% H20 + 25% OH. It i s  q u i t e  l i k e l y  t h a t  f o r  the temperature and 

pressure range over the ramp, OH i s  h i g h l y  e f f e c t i v e  i n  absorbing the 

r a d i a t i v e  energy. The r e s u l t s  for two d i f f e r e n t  y- locat ions are seen t o  be 

e s s e n t i a l l y  the same. I t  i s  possible tha t  f o r  the physical  condi t ions o f  the 

problem, the r a d i a t i v e  t rans fe r  process i s  c lose r  to the o p t i c a l l y  t h i n  l i m i t ;  

and, i n  t h i s  l i m i t ,  the r a d i a t i v e  f l u x  i s  independent o f  the y- locat ion (Refs. 

29 and 30). 

To i n v e s t i g a t e  the e f f e c t s  o f  r a d i a t i v e  energy t rans fe r  i n  chemcial ly 

reac t i ng  flows, premixed hydrogen and a i r  w i th  an equivalence r a t i o  o f  u n i t y  

was selected. Spec i f i c  r e s u l t s  were obtained again f o r  the geometry o f  Fig. 

5.2 w i t h  the i n l e t  condi t ions being exact ly the same as f o r  Fig. 5.8. For the 

physical  condi t ions o f  the problem, the r a d i a t i o n  p a r t i c i p a t i n g  species 

produced due to chemical reac t i on  essen t ia l l y  are OH and H20. The r a d i a t i v e  

i n t e r a c t i o n  i s  s t a r t e d  a t  about X/L, = 0.20 t o  make sure there are s i g n i f i c a n t  

amounts o f  OH and H20 produced by the reac t i on  f o r  a c t i v e  p a r t i c i p a t i o n .  The 

pressure contours f o r  t h i s  case are shown i n  Fig. 5.11. A comparison o f  the 

pressure contours f o r  the nonreacting and reac t i ng  f lows as given i n  Figs. 5.8 

and 5.11 shows t h a t  the shock angle has increased i n  the case o f  the r e a c t i n g  

flow. This i s  due to a r e l a t i v e l y  th icker  boundary l aye r  and changes i n  the 

thermophysical p roper t i es  o f  the mixture. 
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The d i s t r i b u t i o n  o f  various species a t  the lower boundary and center o f  

the channel a re  i l l u s t r a t e d  respec t i ve l y  i n  F igs 5.12 and 5.13. Due to the 

h igh temperature, OH increases very rap id l y  over a s h o r t  d istance from the 

i n l e t  and then remains constant f o r  both y-locations. The concentrat ion o f  OH 

i s  found to be higher near the boundaries due to r e l a t i v e l y  higher tempera- 

ture. The r a t e  o f  r a d i a t i v e  f l u x  along the channel i s  compared f o r  t h i s  case 

i n  Fig. 5.14 f o r  the reac t i ng  and nonreacting flows. For the nonreacting 

flow, the r a d i a t i v e  f l u x  i s  evaluated f o r  25% H20; wh i le  f o r  the reac t i ng  

flow, i t  i s  evaluated f o r  H20 and OH produced by the actual  react ion.  It i s  

noted t h a t  although the amount o f  p a r t i c i p a t i n g  species i s  l e s s  i n  the 

reac t i ng  case, the r a d i a t i v e  f l u x  i s  considerably higher i n  t h i s  case than the 

nonreacting flow. This i s  due t o  the increase i n  temperature caused by the 

chemical r e a c t i o n  . 
The v a r i a t i o n s  i n  temperature and species concentrat ion along the channel 

are i l l u s t r a t e d  respec t i ve l y  i n  Figs. 5.15 and 5.16 f o r  chemical ly react ing,  

and chemical ly reac t i ng  and r a d i a t i n g  flows. The r e s u l t s  are obtained f o r  

exac t l y  the same condi t ions as used i n  Figs. 5.11-5.14. The temperature 

v a r i a t i o n s  i n  Fig. 5.15 are given f o r  d i f f e r e n t  y- locat ions.  It i s  noted t h a t  

the temperature w i t h i n  the boundary layer ( y  = 0.025) i s  about f i v e  percent 

higher f o r  the reac t i ng  and r a d i a t i n g  in teract ion.  For other l oca t i ons  (y = 

0.2 and 1.5 cm), no s i g n i f i c a n t  d i f ference i n  the r e s u l t s  f o r  the two cases 

was noted. The v a r i a t i o n  i n  mass f r a c t i o n  for  d i f f e r e n t  species i s  shown i n  

Fig. 5.16 w i t h i n  the boundary l aye r  (y = 0.025 cm). I t  i s  found t h a t  due t o  

the r a d i a t i v e  i n te rac t i on ,  the concentrat ion o f  OH increases by about f i v e  

percent and the concentrat ion o f  H20 decreases by the same amount. It should 

be noted t h a t  the r a d i a t i v e  i n te rac t i on  has no s i g n i f i c a n t  e f f e c t  on 02 and 

H2. 



Fig.  5.1 Plane radiating layer between parallel boundaries. 
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Fig. 5.2 Radiating flow i n  a channel w i t h  compression expansion ramp. 
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6. CONCLUSIONS 

The two-dimensional s p a t i a l l y  e l l i p t i c  Navier-Stokes equations have been 

used to obta in  so lu t ions  f o r  chemically react ing and r a d i a t i n g  supersonic f low 

between two p a r a l l e l  p la tes  and i n  a channel w i t h  a ten-degree ramp a t  the 

lower boundary. The i n l e t  condi t ions used f o r  s p e c i f i c  so lu t ions  correspond 

t o  p a r t i c u l a r  f low condi t ions o f  a scramjet engine. For both phys ica l  

geometries, d iagnos t ic  so lu t ions  were obtained to inves t i ga te  the in f luence o f  

the r a d i a t i v e  i n t e r a c t i o n  w i thout  considering any chemical react ion.  

D i f f e r e n t  amounts of H20 and OH were used w i t h  a i r  f o r  parametric studies. I t  

i s  noted t h a t  the r a d i a t i v e  i n t e r a c t i o n  increases w i t h  increas ing pressure, 

temperature, species concentration, and Mach number. I n  the case o f  f low 

w i thou t  chemical react ion,  most o f  the energy t rans fer red  i s  by convection i n  

+,he A,frec+,fofl Qf the flew. As 2 result, the radfa t fve  <am+----&<-- I II LCI ab LIUII doer i i o t  

a f f e c t  the f low f i e l d  s i g n i f i c a n t l y .  Some impor tant  r e s u l t s  were obtained by 

consider ing the reac t i ng  f low i n  the channel w i t h  a ramp. The r e s u l t s  reveal  

that ,  i n  the case o f  f low w i t h  strong shocks, r a d i a t i o n  can have s i g n i f i c a n t  

infuence on the e n t i r e  f low f i e l d ;  however, the in f luence i s  stronger i n  the 

boundary layers.  It i s  found t h a t  the numerical scheme based on the pseudo 

gray gas formulat ion f o r  the r a d i a t i v e  f l u x  i s  h igh l y  e f f i c i e n t  as compared t o  

the scheme based on the nongray gas formulation, espec ia l l y  f o r  the vector  

processing computers such as VPS-32. For f u r t h e r  study, i t  i s  suggested t h a t  

the present formulat ion be extended to i nc lude two-dimensional r a d i a t i v e  

i n t e r a c t i o n s  and provide parametric inves t iga t ions  f o r  higher i n l e t  Mach 

numbers . 
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APPENDICES 



APPENDIX A 

DE'RIVATION OF CONDUCTION HEAT FLUX TERMS 

To s i m p l i f y  the Eqs. (2.3) to Eqs. (2.41, the Lewis number i s  assumed t o  

be uni ty .  This s i m p l i f i c a t i o n  i s  ca r r i ed  o u t  i n  d e t a i l  f o r  Eq. (2.3b) and the 

same f s  app l i ed  t o  Eq. (2.3a). Using the expressions f o r  the thermal 

d f f f u s f v f t y  (a )  and Lewis number (Le), Eq. (2.3b) can be expressed as 

Le = a/D 

Def in ing the b inary d i f f u s i o n  c o e f f i c i e n t  D i n  terms o f  the Pandtl and Lewis 

number Eq. (A.1) can be expresses as 

P r  = v /a 

where 

The s t a t i c  enthalpy o f  the mixture i s  given by the r e l a t i o n  

m T 
= c thy + Cp dr)] fi 
i =1 o i  

(A.3) 

It should be noted t h a t  r) i s  a dummy va r iab le  employed t o  evaluate the 

sensible enthalpy. Using the L e i b n i t z  formula Eq. (A.3) i s  d i f f e r e n t i a t e d  t o  

obta in  
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The c o e f f i c i e n t s  o f  the f i r s t  d i f f e r e n t i a l  on the r i g h t  side is  equal t o  hi 

and the second and t h i r d  terms are ident ica l  to  zero, therefore, Eq. ( A . 4 )  

reduces t o  

o r  

a 
fi aT m 

i = l  

ah 
P a y  a y =  C h i a y + C  

or  

( A . 5 )  
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APPENDIX B 

EXPRESSIONS FOR RADIATIVE FLUX 

The general equation o f  r a d i a t i v e  f l u x  i s  obtained from Ref. 5 as 

E2 (7, - t) d t  

E2 ( t  - z,) d t  

where the En( t )  are the exponential i n teg ra l  funct ions def ined by 

(B.1) 

For a d i f f u s e  surface the q u a n t i t i e s  1: (0 ,p )  and Ih(zohBp) are given as 



From the Appendix 8 o f  Ref. 5, one f i nds  

Now, consider the f i r s t  i n teg ra l  i n  Eq. (8.3) 

I1 = f =A E2(rA- t ) ’d t  

0 

By de f in ing  y=TA-t, dy = - dt, Eq. (8.5) i s  expressed as 

O T- 

Thus - 

The second in teg ra l  i n  (8.3) i s  wr i t ten  as 

OA 7 
I2 = f E2(t- tA) d t  - 

BY def in ing y = t-TA, Eq. (8.7) i s  w r i t t en  as 

12 = f 0 $A-’A E2(y) dy = -E3(y)lbA-7A 0 

(8.5) 

(8 .7 )  

A subs t i t u t i on  of Eqs. (8.6) and (8.8) i n t o  Eq. ( 8 . 3 )  r e s u l t s  i n  
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Equation (B.9) i s  exact ly  l i k e  Eq. (3 .9)  i f  i t  i s  w r i t t e n  i n  terms o f  the wave 

number ( w )  instead o f  the wave length (A). 



APPENDIX C 

BOUNDARY CONDITIONS FOR GRAY MODEL 

The evaluat ion o f  the second order d i f f e r e n t i a l  equation, Eq. (3.181, 

requi res two boundary condit ions. I n  th i s  Appendix, the boundary condi t ions 

f o r  nonblack d i f f u s e  surfaces are derived. 

Applying the exponential kernal approximations t o  Eq. (3.81, one obta ins 

3 - '2 (t-z,) 
- 7  3 *Zoh ebh(t)  e d t  

zx 
(C.1) 

By employing the L e i b n i t z  formula, the divergence o f  the r a d i a t i v e  f l u x  i s  

expressed as 

3 - 7 (t-t,) - ebh(t) e dt "2 ( z  h 1 
=A 

(C.2) 

Evaluat ing the r a d i a t i v e  f l u x  terms a t  the lower and upper w a l l s  the r e l a t i o n s  

for  qRh and diVqRh are expressed as 



M u l t i p l y i n g  Eq. (C.3) by ‘2 and Eq. (C.4) by 

i n t o  Eqs. (C.5) and (C.6) respect ively,  one obta ins 

( -  $1 and then s u b s t i t u t i n g  

+ 3 q  7 Rh ( z  oh ) = 3 e  b h  i z  oh ) + 3 ~ ~ ~  (C.8) 

The r a d i o s i t i e s  Blh and B2h are expressed as 

(C.9a) 

(C.9b). 

- 
B lh  - ‘lh e b l h  + - ‘lh) CBlh - qRh(o) l  

- - ‘2h eb2h + ( l  - ‘2A) CB2h - qRh ( z o h ) l  

Rearranging Eqs. (C.9) and s u b s t i t u t i n g  fo r  

(C.8) the boundary condi t ions are expressed as 

Blh and BPh i n t o  Eqs. (C.7) and 



For the gray medium, A dependence i s  deleted; and then Eqs. (C.10) a r e  

exact ly  l i k e  Eqs. (3.19). 


